全国服务热线
135090015255G时代已经到来,由于其高频高速的特性,将使得材料端有很大的变化。其中LCP 就遇到了这样 0→1 的发展契机,凭借其低阻抗、高耐受的特性,预计将成为最为适合的材料。随着5G频率提升,LCP材料及其制品的渗透率将逐步提升,预计将使 LCP 整个市场快速增加至百亿以上。
一、LCP,性能优异的工程塑料
1、LCP 材料:优异的新型高性能特种工程塑料
液晶高分子(LCP)是指在一定条件下能以液晶相存在的高分子,其特点为分子具有较高的分子量又具有取向有序。LCP在以液晶相存在时粘度较低,且高度取向,而将其冷却,固化后,它的形态又可以稳定地保持,因此 LCP材料具有优异的机械性能。此外,LCP材料还由于具有低吸湿性、耐化学腐蚀性、耐候性、耐热性、阻燃性以及低介电常数 和介电损耗因数等特点。
LCP 根据形成液晶相的条件,可分为:(1)溶致性液晶 LLCP,可在有机溶液中形成 液晶相,由于这种类型的聚合物只能在溶液中加工,不能熔融,多能用作纤维和涂料。(2)热致性液晶 TLCP,在熔点或玻璃化转变温度以上形成液晶相,由于这种类型的聚合可在 熔融状态加工,所以不但可以通过溶液纺丝形成高强度纤维,而且可以通过注射、挤出等 热加工方式形成各种制品。
热致性LCP 根据热变形温度高低分为高耐热型(I 型)、中耐热型(II 型)和低耐热型(III 型) 。I型TLCP的基本结构主要为对羟基苯甲酸(HBA)、联苯二酚(BP)及不同比例的对苯二甲酸(TA)/间苯二甲酸(IA)引出的单元,抗张强度及模量在TLCP中最 高,热变形温度高于 300℃。以苏威的 Xydar 和住友的 SimikaSuper 为代表。II 型 TLCP的主要成分是 HBA 和 6-羟基-2-萘甲酸(HNA)引出的单元,热变形温度在 240~280℃之 间,加工性能优异,可用挤出机和注塑机加工成型,典型的产品为泰科纳的 Vectra。III 型 LCP 主要为 HBA 和聚对苯二甲酸乙二醇酯(PET)合成的共聚物,热变形温度低于 210℃, 如尤尼奇卡的 Rodrun 为代表的非全芳香族系列。
LCP 材料具有优异的耐热性能和成型加工性能。聚合方法以熔融缩聚为主,全芳香族 LCP 多辅以固相缩聚以制得高分子量产品。非全芳香族 LCP 塑胶原料常采用一步或二步 熔融聚合制取产品。近年连续熔融缩聚制取高分子量 LCP 的技术得到发展。液晶芳香族聚 酯在液晶态下由于其大分子链是取向的,它有异常规整的纤维状结构,性能特殊,制品强度很高,并不亚于金属和陶瓷。机械性能、尺寸稳定性、光学性能、电性能、耐化学药品性、阻燃性、加工性良好,耐热性好,热膨胀系数较低。
2、产业链:中上游为技术难点,下游应用广泛
CP 产业链中,LCP 树脂的合成及成膜为技术难点。目前,LCP 树脂主流的合成方 法包括以下 4 种。
(1)氧化酯化法:氧化酯化法是一种芳香族羧酸与酚的直接聚合方法。该方法在吡啶或者酰胺溶剂中,在含磷化合物或者亚硫酰氯等活化剂以及催化剂作用下进行反应,可 以得到高分子量的 LCP,该方法反应条件较温和,且可以通过单体加入顺序控制分子结构 序列。
(2)硅酯法:芳香族酸类单体通过三甲基硅酯化后,再与乙酰化的酚类单体,通过 溶液或者熔融聚合工艺,去除三甲基硅乙酸酯小分子,可得到高分子量的 LCP。
(3)苯酯法:芳香族羧酸苯酯与酚类单体进行熔融缩聚的方法。但该方法采用的芳 香族羧酸苯酯价格比较昂贵,且在反应过程中会生成小分子苯酚难以除干净。最近住友化 学采用碳酸二苯酯与酚类单体通过“一步法”合成工艺合成出低醋酸残留的 LCP,且树脂具有良好的流动性,是一种具有潜在优势的合成工艺。
(4)酸解反应法:芳香族二元酸与乙酰化的酚类单体进行熔融缩聚,脱去副产物醋 酸得到 LCP。该方法是目前LCP工业化生产的主要方法。
LCP 材料下游应用领域不断拓展。LCP 兼具高分子材料和液晶材料的特点,具有杰出的综合性能,其在航空航天、电子、汽车工业等领域都得到了广泛的应用。同时随着LCP新产品的开发,新兴应用领域仍在不断拓展。
5G 时代来临,LCP需求迎来爆发
5G 时代逐步来临,由于5G高频高速的特点,对材料的要求也进一步提高,尤其是在信号传输过程中降低损耗显得非常重要。LCP是目前工程塑料领域介电损耗最低的材料,综合优势最强,我们认为未来在基站端和手机端都将大幅增加 LCP 材料的使用。
LCP 材料介绍
1、手机端,LCP模组将有望成为手机天线端的终端解决方案
在5G领域手机端,LCP凭借良好的传输损耗、可弯折性、尺寸稳定性及低吸水率,是技术角度上最符合天线要求的材料。目前PI基板FPC天线模组仍是目前手机主流设计方案。但是随着5G时代的来临,预计MPI和LCP基板的FPC将加速替代。以A公司为例,在iPhone8首次引入LCP软板的天线方案,2018年三款机型 XR/XS/XS max仍继续采用LCP天线方案,分别使用3/3/2个LCP天线。我们认为这是A公司在为5G时代进行提前布局。
目前。MPI通过调整配方性能已大幅提升,在Sub-6GHz频谱下与LCP性能相当(但在毫米波频谱下仍有差距),且成本低于LCP天线 20-30%。此外,从供应链的角度而言目前LCP薄膜基本上被日本企业垄断。MPI的供应商远多于LCP,从供应链稳定性和议 价能力角度。A公司短期降低了LCP天线的数量;但是考虑到长期国内产能的释放和技术 的逐步突破,我们认为随着 LCP 膜材的逐步国产化,LCP 基材的软板的成本将大幅下降, 市场将加速拓展。
根据Yole发布的5G发展路线图,未来通信频率将分两个阶段进行提升。第一阶段的目标是在 2020 年前将通信频率提升到6GHz,第二阶段的目标是在2020年后进一步提升到30-60GHz。在市场应用方面,智能手机等终端天线的信号频率不断提升,高频应用越来越多,高速大容量的需求也越来越多。为适应当前从无线网络到终端应用的高频高速趋势,软板作为终端设备中的天线和传输线,我们认为其中的MPI天线可能只是过渡,未来主力市场将是LCP天线。
2、基站端。LCP的振子将有望成为主流路线
5G 基站对于振子有更严格的要求:(1)高度集成,主动天线单元(AAU)集成 RRU 和 AAU,支持更多天线频段需提升生产效率,SMT 成为 AAU 的制造工艺,天线振子材料 耐温超过 260℃。(2)大规模多入多出(Massive MIMO)及波束赋形天线技术,需要更 多的天线,材料需轻量化,塑料天线振子成为趋势。(3)毫米波段的电磁波衰减性大,要 求天线振子材料具有低介电损耗。
目前市场上天线振子类型可大致分为三种:金属压铸、PCB 贴片和塑料振子,其中塑料振子又有LDS(激光直接成型技术)和选择性电镀两种工艺方案。4G 时代的天线振子以金属材质为主,制造工艺以铸造工艺和钣金工艺为主,重量和体积较大,信号传输精度 也不能很好地满足 5G 时代的要求;而PCB贴片虽然重量轻、成本可控,但是面损耗高,对施工安装的要求也较高。而通过改性塑料材料,用注塑成型的方式将天线振子形状一次性制造出来,再采用特 殊技术将振子的塑料表面金属化,与钣金、压铸式工艺相比,3D塑料振子除了在重量上 具有优势,还能满足钣金和压铸工艺所不能实现的精度要求,能较好地适应3.5GHz以上的高频场景,将成为5G时代天线振子的主流方案。
目前主流的振子使用的改性塑料方案以PPS(聚苯硫醚)为主,相较于 PPS 材料,LCP材料具有低介电损耗、耐候性好、综合成本低等优势,未来有望加速进入供应链体系。
四、市场空间超过百亿,价值量上薄膜优于树脂
我们按照手机端和基站端分别进行测算,来测算 LCP 未来市场的需求空间。 我们认为未来 LCP 市场将超过百亿,其中 LCP 薄膜的市场空间就超过百亿。目前, LCP 薄膜主要的生产企业仍是国外企业,但是国内一些树脂企业和拉膜企业已经在进行试 样并取得了良好的效果,目前正在工业化准备阶段,我们预计 2020 年下半年就会有企业 形成实质性的销售。 LCP 树脂需求将快速增长,预计未来 5 年行业的总需求量将翻番,其中适合拉膜的高 端牌号需求将快速增长。